Tolerogenic Splenic IDO+ Dendritic Cells from the Mice Treated with Induced-Treg Cells Suppress Collagen-Induced Arthritis
نویسندگان
چکیده
TGF-β-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs) in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c(+)DCs, termed "DCiTreg," expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-β, and IDO, and showed potent immunosuppressive activity in vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-β production was high in the DCiTreg-treated group. DCiTreg also induced new iTregs in vivo. Moreover, the inhibitory activity of DCiTreg on CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCs in vivo.
منابع مشابه
CD40 Knocked Down Tolerogenic Dendritic Cells Decrease Diabetic Injury
Background: Type-1 diabetes (T1D) is an autoimmune disease in which T lymphocytes destroy insulin-producing β-cells. Control of self-reactive T lymphocytes and recovery of diabetic injury is the end point of T1D. Objective: To investigate generation of tolerogenic dendritic cells (tolDCs) as an innovative method of diabetes therapy. Methods: Lentivirus vector production was achieved by GIPZ mou...
متن کاملHistone deacetylase inhibition alters dendritic cells to assume a tolerogenic phenotype and ameliorates arthritis in SKG mice
INTRODUCTION The purpose of this study was to elucidate the effects of histone deacetylase inhibition on the phenotype and function of dendritic cells and on arthritis in SKG mice. METHODS Arthritis was induced in SKG mice by zymosan A injection. Trichostatin A, a histone deacetylase inhibitor, was administered and its effects on arthritis were evaluated by joint swelling and histological eva...
متن کاملAdoptive Cell Therapy of Induced Regulatory T Cells Expanded by Tolerogenic Dendritic Cells on Murine Autoimmune Arthritis
OBJECTIVE Tolerogenic dendritic cells (tDCs) can expand TGF-β-induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTregmtDC) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mous...
متن کاملRosiglitazone-mediated dendritic cells ameliorate collagen-induced arthritis in mice.
Rosiglitazone is a selective ligand for peroxisome proliferator-activated receptor-gamma (PPAR-γ), which serves diverse biological functions. A number of autoimmune disease models have been used to examine the anti-inflammatory and immunosuppressive effects of tolerogenic dendritic cells (tDCs). The aim of the present study was to investigate whether rosiglitazone-mediated DC (Rosi-DC) therapy ...
متن کاملIndoleamine 2,3-dioxygenase-expressing dendritic cells are involved in the generation of CD4+CD25+ regulatory T cells in Peyer's patches in an orally tolerized, collagen-induced arthritis mouse model
INTRODUCTION The present study was devised to understand the role of systemic indoleamine 2,3-dioxygenase (IDO) in the tolerance induction for orally tolerized mice in collagen-induced arthritis (CIA). We examined whether IDO-expressing dendritic cells (DCs) are involved in the generation of CD4+CD25+ regulatory T cells during the induction of oral tolerance in a murine CIA model. METHODS Typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014